曲良体课题组

Welcome to Dr. Qu's Group

研究

   主要围绕碳基、高分子基纳微米材料开展研究,涉及碳纳米管、石墨烯、导电高分子等的可控制备、功能化修饰及其应用研究,包括功能结构与材料制备、先进能源器件、激光微纳制造等方面。

Research

   Research is involved in the preparation of functional structures and materials, advanced energy-related devices and laser micro- nanofabrication. Interest mainly focuses on the synthesis, functionalization and applications of carbon-based and polymer-based materials including carbon nanotubes, graphenes and conducting polymers.

发表论文(Full publication list)

    2018年:

    210.Xiao Y.K., Cheng H, Zhao Y*, Qu L.T.*, “Highly crumpled nanocarbons as efficient metal-free electrocatalysts for zinc-air batteries”, Nanoscale, 2018, 10 (33), 15706-15713.

    209. Gao K, Wang B, Tao L, Cunning B.V. , Zhang Z, Wang S*, Ruoff R.S.*, Qu L.T.*, “Efficient Metal-Free Electrocatalysts from N-Doped Carbon Nanomaterials: Mono-Doping and Co-Doping”, Adv. Mater., 2018, DOI:  10.1002/adma.201805121.

                                                                                                             

    208. Sun G.Q., Yang H.S., Zhang G.F., Gao J, Jin X.T. Zhao Y, Jiang L, Qu L.T.*, “A capacity recoverable zinc-ion micro-supercapacitor”,Energy Environ. Sci., 2018, 11(12), 3367-3374.

                                                                                      

    207. Bai J.X., Lu B.C., Han Q* , Li Q.S.*, Qu L.T.*, “(111) Facets-Oriented Au-Decorated Carbon Nitride Nanoplatelets for Visible-Light-Driven Overall Water Splitting”,ACS Appl. Mater. Interfaces., 2018,10(44), 38066-38072.

    206. Bai J.X., Han Q*, Cheng Z.H., Qu L.T.* ,Wall-Mesoporous Graphitic Carbon Nitride Nanotubes for Efficient Photocatalytic Hydrogen Evolution”, Chem. Asian J., 2018, 13(21), 3160-3164.

    205. Yang H.S., Li Z.L., Lu B, Gao J, Jin X.T., Sun G.Q., Zhang G.F., Zhang P.P., Qu L.T.*, “Reconstruction of Inherent Graphene Oxide Liquid Crystals for Large-Scale Fabrication of Structure-Intact Graphene Aerogel Bulk toward Practical Applications”, ACS Nano, 2018,12(11), 11407-11416.

                                                                                   

    204. Shao C.X., Gao J, Xu T, Ji B.X., Xiao Y.K., Gao C, Zhao Y*, Qu L.T.*, “Wearable fiberform hygroelectric generator”, Nano Energy, 2018, 53, 698-705.

                                                                                

    203. Li C.X., Yu J.Y., Xue S.L., Cheng Z.H., Sun G.Q., Zhang J*, Huang R.D.*, Qu L.T.*, “Wood-inspired multi-channel tubular graphene network for high-performance lithium-sulfur batteries”, Carbon, 2018, 139, 522-530.

    202. Jin X.T., Sun G.Q., Yang H.S., Zhang G.F., Xiao Y.K., Gao J, Zhang Z.P.*, Qu L.T.*, “A graphene oxide-mediated polyelectrolyte with high ion-conductivity for highly stretchable and self-healing all-solid-state supercapacitors”, J. Mater. Chem. A, 2018, 6(40), 19463-19469.

    201. Gao C , Gao J, Shao C.X ., Xiao Y.K., Zhao Y*,Qu L.T.*, “Versatile origami micro- supercapacitors array as a wind energy harvester”, J. Mater. Chem. A, 2018, 6(40), 19750-19756.

    200. Liang Y, Liu F, Deng Y.X., Zhou Q.H., Cheng Z.H., Zhang P.P., Xiao Y.K., Lv L.X., Liang H.X., Han Q*, Shao H.B.* ,Qu L.T.*, “A Cut-Resistant and Highly Restorable Graphene Foam”, Small, 2018, DOI: 10.1002/smll.201801916.

    199. Gao J, Shao C.X., Shao S.X., Wan F, Gao C , Zhao Y, Jiang L, Qu L.T. *, “Laser-Assisted Large-Scale Fabrication of All-Solid-State Asymmetrical Micro-Supercapacitor Array”, Small, 2018, DOI: 10.1002/smll.201801809.

    198. Ye M.H., Xiao Y.K., Cheng Z.H., Cui L.F., Jiang L, Qu L.T. *, “A smart, anti-piercing and eliminating-dendrite lithium metal battery”, Nano Energy,2018, 49, 403-410.

                                                                                

    197. Sun G.Q., Jin X.T., Yang H.S., Gao J, Qu L.T. *, “An aqueous Zn-MnO2 rechargeable microbattery”, J. Mater. Chem. A, 2018, 6 (23) ,10926-10931.

    196. Han Q*, Cheng Z.H., Wang B, Zhang H.M. * , Qu L.T.*, “Significant Enhancement of Visible-Light-Driven Hydrogen Evolution by Structure Regulation of Carbon Nitrides”, ACS Nano, 2018, 12(6), 5221-5227.

                                                                                                                                    

    195. Liang Y, Zhao F, Cheng Z.H., Deng Y.X., Xiao Y.K., Cheng H.H., Zhang P.P., Huang Y.X., Shao H.B.*, and Qu L.T.*“Electric Power Generation via Asymmetric Moisturizing of Graphene Oxide for Flexible, Printable and Portable   Electronics”, Energy Environ. Sci., 2018. DOI:10.1039/C8EE00671G.

    194. Zhao F, Zhou X.Y., Shi Y, Qian X, Alexander M, Zhao X.P., Mendez S, Yang R.G.*, Qu L.T.*, and Yu G.H.*, “Highly efficient solar vapour generation via hierarchically nanostructured gels”, Nature Nanotechnology, 2018.

           https://www.nature.com/articles/s41565-018-0097-z.pdf

    193. Cui L.F., Zhang P.P., Xiao Y.K., Liang Y, Liang H.X., Cheng Z.H., and Qu L.T.*, “High Rate Production of Clean Water Based on the Combined Photo-Electro-Thermal Effect of Graphene Architecture”, Adv. Mater., 2018, 1706805.

    192. Xu T, Ding X.T., Shao C.X., Song L, Lin T.Y., Gao X, Xue J.L., Zhang Z.P., and Qu L.T.*, “Electric Power Generation through the Direct Interaction of Pristine Graphene-Oxide with Water Molecules”, Small, 2018, 1704473.

    191. Nie X.W., Ji B.X., Chen N*, Liang Y, Han Q, and Qu L.T.*, “Gradient doped polymer nanowire for moistelectric nanogenerator”, Nano Energy, 2018, 46, 297-304.

    190. Ye M.H., Zhang Z.P.*, Zhao Y, and Qu L.T.*, “Graphene platforms for smart energy generation and storage”, Joule, 2018, 2, 245–268.

    189. He D, Song L, Lv L.X., Zhang Z.P.*, and Qu L.T.*, “Superelastic air-bubbled graphene foam monoliths as structural buffer for compressible high-capacity anode materials in lithium-ion batteries”, Chemical Engineering Journal, 2018, 331, 704-711.

    188. Li J, Ji B.X., Jiang R, Zhang P.P., Chen N*, Zhang G.F., and Qu L.T.*, “Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization”, Carbon, 2018, 129, 95-103.

    187. Wang P.B., Cheng Z.H., Lv G.Q.*, Zhao Y*, and Qu L.T.*, “Coupling interconnected MoO3/WO3 nanosheets with a graphene framework as a highly efficient anode for lithium-ion batteries”, Nanoscale, 2018, 10, 396–402.

    186. Cheng Z.H., Fu Q, Han Q, Xiao Y.K., Liang Y, Zhao Y*, and Qu L.T.*, “A Type of 1 nm Molybdenum Carbide Confined within Carbon Nanomesh as Highly Efficient Bifunctional Electrocatalyst”, Adv. Funct. Mater., 2018, 1705976.

     

    2017年:

     

     185. Ye M.H., Gao J, Xiao Y.K, Xu T, Zhao Y, and Qu L.T.*, “Metal/graphene oxide batteries”, Carbon, 2017, 125, 299-307.

     184. Hu C.G., Chen X.Y., Dai Q.B., Wang M, and Qu L.T.*, Dai L.M.*, “Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water”, Nano Energy, 2017, 41, 367-376.

     183. Shao C.X., Xu T, Gao J, Liang Y, Zhao Y*, and Qu L.T.*, “Flexible and Integrated Supercapacitor with Tunable Energy Storage”, Nanoscale, 2017, 9, 12324-12329.

     182. Han Q*, Chen N*, Zhang J, and Qu L.T.*, “Graphene/graphitic carbon nitride hybrids for catalysis”, Materials Horizons, 2017, 4, 832-850.

     181. Ding X.T., Xu T, Gao J, Qi Y.M., Zhang H.M.* and Qu L.T.*, “Dimensional confinement of graphene in a polypyrrole microbowl for sensor applications”, J. Mater. Chem. B, 2017, 5, 5733-5737.

     180. Li J, Zhang G.F., Chen N*, Nie X.W., Ji B.X., and Qu L.T.*, “Built Structure of Ordered Vertically Aligned Codoped Carbon Nanowire Arrays for Supercapacitors”, ACS Appl. Mater. Interfaces., 2017, 9, 24840-24845.

     179. Lv L.X., Zhang P.P., Xu.T, and Qu L.T.*, “Ultrasensitive Pressure Sensor Based on an Ultralight Sparkling Graphene Block”, ACS Appl. Mater. Interfaces., 2017, 9, 22885-22892.

     178. Cheng Z.H., Gao J, Fu Q, Li C.X., Wang X.P., Xiao Y.K., Zhao Y*, Zhang Z.P., and Qu L.T.*, “Interconnected Molybdenum Carbide-Based Nanoribbons for Highly Efficient and Ultrastable Hydrogen Evolution”, ACS Appl. Mater. Interfaces., 2017, 9 , 24608–24615.

     177. Cui L.F., Wang X.P., Chen N*, Zhang G.F., Qu L.T. *, “A versatile graphene foil”, Journal of Materials Chemistry A, 2017, 5, 14508-14513.

     176. Cui L.F., Wang, X.P., Chen N*, Ji B.X., Qu L.T. *, “Trash to treasure: converting plastic waste into a useful graphene foil”, Nanoscale, 2017, 9, 9089-9094.

     175. Li C.X., Li Z.L., Cheng Z.H., Ding X.T., Zhang J.*, Huang R.D.*, Qu L.T.*, “Functional Carbon Nanomesh Clusters”, Adv. Funct. Mater., 2017, 27, 1701514.

    174. Gao J, Cheng Z.H., Shao C.X., Zhao Y*, Zhang Z.P., and Qu L.T.*, “2D Free-standing Film-Inspired Electrocatalyst for Highly Efficient Hydrogen Production”, Journal of Materials Chemistry A, 2017, 5, 12027-12033.

    173. Gao J, Xu C.Y., Hu Y, Zhao F, Shao C.X., Zhao Y*, Chen S.L., and Qu L.T.*, “Unusual Assembly and Conversion of Graphene Quantum Dots into Crystalline Graphite Nanocapsules”, Chem. Asian J., 2017, 12, 1272-1276.

    172. Zhang P.P., Li J, Lv L.X., Zhao Y, and Qu L.T.*, “Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water”, ACS nano, 2017, 11, 5087-5093. 

            http://www.nature.com/nnano/journal/v12/n6/full/nnano.2017.117.html

    171. Han Q, Cheng Z.H., Gao J, Zhao Y*, Zhang Z.P.*, Dai L.M., and Qu L.T.*, “Mesh-on-Mesh Graphitic-C3N4@Graphene for Highly Efficient Hydrogen Evolution”, Adv. Funct. Mater., 2017, 27, 1606352.

    170. Zhao Y*, Han Q, Cheng Z.H., Jiang L, and Qu L.T.*, “Integrated graphene systems by laser irradiation for advanced devices”, Nano Today, 2017,12, 14-30.

    169. Liang Y, Zhao F, Cheng Z.H., Zhou Q.H., Shao H.B.*, Jiang L, and Qu L.T.*, “Self-powered wearable graphene fiber for information expression”, Nano Energy, 2017, 32, 329-335.

    168. Zhao F, Wang L.X., Zhao Y, Qu L.T.*, and Dai L.M.*, “Graphene Oxide Nanoribbon Assembly toward Moisture-Powered Information Storage”, Adv. Mater., 2017, 29(3),1604972.

    2016年:

     

    167. Jiang Y, Shao H.B., Li C.X., Xu T, Zhao Y, Shi G.Q., Jiang L, and Qu L.T.*, Versatile Graphene Oxide Putty-Like Material”, Adv. Mater., 2016, 28(46), 10287-10292.
    166. Wang X.P., Gao J, Cheng Z.H., Chen N, and Qu L.T.*, “A Responsive Battery with Controlled Energy Release”, Angew. Chem. Int. Ed., 2016, 128(47), 14863-14867.
                  
    165. Cheng Z.H., Fu Q, Li C.X., Wang X.P., Gao J, Ye M.H., Zhao Y*, Dong L.J., Luo H.X., Qu L.T.*,“Controllable localization of carbon nanotubes on the holey edge of graphene: an efficient oxygen reduction electrocatalyst for Zn-air batteries , Journal of Materials Chemistry A, 2016, 4, 18193-18656.
    164. Ye M.H., Cheng H.H., Gao J, Li C.X., Qu L.T.*, “A respiration-detective graphene oxide/lithium battery”, Journal of Materials Chemistry A, 2016, 4, 19154-19159.
    163. Zhao F, Liang Y, Cheng H.H., Jiang L, and Qu L.T.*, “Highly efficient moisture-enabled electricity generation from graphene oxide frameworks”, Energy Environ. Sci., 2016, 9(3), 912-916.

    162. Han Q., Wang B., Gao J., and Qu L.T.*, “Graphitic Carbon Nitride/Nitrogen-Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts”, Angew. Chem. Int. Ed., 2016, 55, 10849-10853.

    161. Cheng H.H., Ye M.H., Zhao F, Hu C.G., Zhao Y, Liang Y, Chen N, Chen S.L., Jiang L, and Qu L.T.*, A General and Extremely Simple Remote Approach toward Graphene Bulks with In Situ Multifunctionalization”, Adv. Mater., 2016, 28(17), 3305-3312.

    160. Hu C.G., Xue J.L., Dong L.Y., Jiang Y, Wang X.P., Qu L.T.*, and Dai L.M.*, “Scalable Preparation of Multifunctional Fire-Retardant Ultralight Graphene Foams”, ACS Nano, 2016, 10 (1), 1325-1332.

    159. Wang X.P., Lv L.X., Cheng Z.H., Gao J, Dong L.Y., Hu C.G., and Qu L.T.*, “High-Density Monolith of N-Doped Holey Graphene for Ultrahigh Volumetric Capacity of Li-Ion Batteries”, Adv. Energy. Mater., 2016, DOI: 10.1002/aenm.201502100.

    158. Dong L.Y., Hu C.G., Song L, Huang X.K., Chen N, and Qu L.T.*, “A large-area, flexible, and flame retardant graphene paper”, Adv. Func. Mater., 2016, 26(9), 1470-1476.

    157. Han Q, Wang B, Gao J, Cheng Z.H., Zhao Y, Zhang Z.P., and Qu L.T.*, “Atomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution”, ACS Nano, 2016, 10 (2), 2745-2751.

    156. Cheng H.H., Zhao F., Xue J.L., Shi G.Q., Jiang L., and Qu L.T.*, One Single Graphene Oxide Film for Responsive Actuation”, ACS Nano, September 16, 2016 (Article), DOI: 10.1021/acsnano.6b04769.

    155. Lv L.X., Zhang P.P., Cheng H.H., Zhao Y., Zhang Z.P., Shi G.Q., and Qu L.T.*, “Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams”, Small, 2016, 12(24), 3229-3234.

    154. Jiang Y., Hu C.G., Cheng H.H., Li C.X., Xu T., Zhao Y.*, Shao H.B.*, and Qu L.T.*,  “Spontaneous, Straightforward Fabrication of Partially Reduced Graphene Oxide–Polypyrrole Composite Films for Versatile Actuators”, ACS nano, 2016, 10(4), 4735-4741.

    153. Xu T., Ding X.T., Liang Y., Zhao Y., Chen N., and Qu L.T.*, “Direct spinning of fiber supercapacitor”, Nanoscale, 2016, 8, 12113-12117.

    152. Zhang P.P., Lv L.X., Liang Y., Li J., Chen H.H., Zhao Y.*, and Qu L.T.*, “A Versatile, Superelastic Polystyrene/Graphene Capsule-like Framework”, Journal of Materials Chemistry A, 2016, 4, 10118-10123.

    151. Cui L.F., Gao J., Xu T., Zhao Y,* and Qu L.T.*, Polymer/Graphene Hybrids for Advanced Energy-Conversion and -Storage Materials”, Chem-Asian J., 2016, 11, 1151-1168.

    150. Ye M.H., Li C.X., Zhao Y., Qu L.T.*, “Graphene decorated with bimodal size of carbon polyhedrons for enhanced lithium storage”, Carbon, 2016, 106, 9-19.

    149. Li C.X., Cheng Z.H., Gao J, Han Q., Ye M.H., Zhang J.*, Huang R.D.*, and Qu L.T.*, “Oxidation degree of graphene reflected by morphology-tailored ZnO growth”, Carbon, 2016, 107, 583-592.

    148. Li J, Huang X.K., Cui L.F., Chen N., and Qu L.T.*, “Preparation and supercapacitor performance of assembled graphene fiber and foam”, Progress in Natural Science: Materials International, 2016, 26(3), 212-220.

    147. Ye M.H., Hu C.G., Lv L.X., and Qu L.T.*, “Graphene-winged carbon nanotubes as high-performance lithium-ion batteries anode with super-long cycle life”, J. Power Sources, 2016, 305, 106-114.

    146. Zhang P.P.,Lv L.X.,Cheng Z.H.,Liang Y,Zhou Q.H.,Zhao Y*, and Qu L.T.*, “Superelastic, Macroporous Polystyrene-mediated Graphene Aerogels for Active Pressure Sensing”, Chem-Asian J., 2016, 11,1071-1075.
     

    2015年:
     

    145. Zhao F, Zhao Y, Cheng H.H., and Qu L.T.*, “A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes”, Angew. Chem. Int. Ed., 2015, 54(49), 14951–14955.

     

    144. Han Q., Wang B., Zhao Y., Cheng H.H., and Qu L.T.*, “A Graphitic-C3N4 "Seaweed" Architecture for Enhanced Hydrogen Evolution”, Angew. Chem. Int. Ed., 2015, 54(39), 11433–11437.

    143. Zhao F, Cheng H.H., Zhang Z.P., Jiang L, and Qu L.T.*, “Direct Power Generation of a Graphene Oxide Film under Moisture”, Adv. Mater., 2015, 27(29), 4351–4357.

    142. Dai L.M.*, Xue Y.H., Qu L.T.*, Choi H.J., and Baek J.B.*, “Metal-Free Catalysts for Oxygen Reduction Reacation”, Chem. Rev., 2015, 115(11), 4823–4892.

    141. Hu C.G., Song L, Zhang Z.P.*, Chen N, Feng Z.H., and Qu L.T.*, “Tailored Graphene Systems for Unconventional Applications in Energy Conversion and Storage Devices”, Energy Environ. Sci., 2015, 8 (1), 31–54.
     

     

    140. Chen L.L., Liu Y, Zhao Y*, Chen N, and Qu L.T.*, “Graphene-based Fibers for Supercapacitor Applications”, Nanotechnology, 2015, 27(3), 032001.

    139. Dong L.Y., Hu C.G., Huang X.K., Chen N*, and Qu L.T.*, “One-pot Synthesis of Nitrogen and Phosphorus Co-doped Graphene and Its Use as High-performance Electrocatalyst for Oxygen Reduction Reaction”, Chem-Asian J., 2015, 10(12), 26092614.

    138. Xue J.L., Hu C.G., Lv L.X., Dai L.M.*, and Qu L.T.*, “Re-shaping Graphene Hydrogels for Effectively Enhancing Actuation Responses”, Nanoscale, 2015, 7(29), 1237212378

    137. Zhao F, Zhao Y, Chen N, and Qu L.T. *, “Stimuli-deformable Graphene Materials: from Nanosheet to Macroscopic Assembly”, Mater. Today, 2015, DOI:10.1016/j.mattod.2015.10.010.

    136. Chen N*, Huang X.K., and Qu L.T.*, “Heteroatoms Substituted and Decorated Graphene: Preparation and Applications”, Phys. Chem. Chem. Phys.,2015, 17(48), 3207732098.

    135. Hu C.G., Lv L.X., Xue J.L., Ye M.H., Wang L.X., and Qu L.T.*, “Branched Graphene Nanocapsules for Anode Material of Lithium-Ion Batteries”, Chem. Mater., 2015, 27 (15), 52535260.

    134. Zhao F, Li Z, Wang L.X., Hu C.G., Zhang Z. P.*, Li C*, and Qu L.T.*, “Supramolecular Quantum Dots as Biodegradable Nano-Probes for Upconversion-Enabled Bioimaging”, Chem. Commun., 2015, 51(67), 1320113204.

    133. Zhao Y*, Zhang J, and Qu L.T.*, “Graphitic Carbon Nitride/Graphene Hybrids as New Active Materials for Energy Conversion and Storage”, Chem. Nano. Mat., 2015, 1(5), 298318.

    132. Han Q, Hu C.G., Zhao F, Zhang Z.P.,* Chen N and Qu L.T.*, “One-step Preparation of Iodine-doped Graphitic Carbon Nitride Nanosheets as Efficient Photocatalysts for Visible Light Water Splitting”, Journal of Materials Chemistry A, 2015, 3, 4612–4619.

    131. Wang X.P., Wang L.X., Zhao F, Hu C.G., Zhao Y, Zhang Z.P.,* Chen S.L.,* Shi G.Q. and Qu L.T.*, “Monoatomic-thick Graphitic Carbon Nitride Dots on Graphene Sheets as An Efficient Catalyst in Oxygen Reduction Reaction”, Nanoscale, 2015, 7, 3035–3042.

    130. Liang Y, Wang Z*, Huang J, Cheng H.H., Zhao F, Hu Y, Jiang L, and Qu L.T.*, “Series of In-Fiber Graphene Supercapacitors for Flexible Wearable Devices”,Journal of Materials Chemistry A, 2015, 3, 2547–2551.

    129. Xu C.Y., Han Q, Zhao Y*, Wang L.X., Li Y, and Qu L.T.*,” Sulfur doped Graphitic Carbon Nitride Decorated with Graphene Quantum Dots for Efficient Metal-free Electrocatalyst”, Journal of Materials Chemistry A, 2015, 3, 1841–1846.

    128. Hu C.G., Han Q, Zhao F, Yuan Z.Y., Chen N and Qu L.T.*, “Graphitic C3N4-Pt nanohybrids supported on a graphene network for highly efficient methanol oxidation”, SCIENCE CHINA Materials, 2015, 58, 21–27.

    127. Chen QZhao Y, Huang X.K., Chen N*, and Qu L.T.*, “Three-Dimensional Graphitic Carbon Nitride Functionalized Graphene-Based High-Performance Supercapacitors”, Journal of Materials Chemistry A, 2015, 3, 6761–6766.

    126. Han Q, Zhao F, Hu C.G., Lv L.X., Zhang Z.P.*, Chen N, Qu L.T.*, “Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting”, Nano Research,2015, 8(5), 1718–1728

    125. Li K, Jiang J.Y., Dong Z.L., Luo H.X.*, Qu L.T.*, “ Linear Graphene Edge Nanoelectrode”, Chem. Commun., 2015, 51, 8765–8768.

    124. Wang L.X., Zhao F, Han Q, Hu C.G., Lv L.X., Chen N and Qu L.T.*, “Spontaneous formation of Cu2O–g-C3N4 core–shell nanowires for photocurrent and humidity responses”, Nanoscale, 2015, 7, 9694–9702.

     
    2014年: 
     

    123. Zhao Y, Zhao F, Wang X.P., Xu C.Y., Zhang Z.P., Shi G.Q. and Qu L.T.*,“ Graphitic Carbon Nitride Nanoribbons: Graphene-Assisted Formation and Synergic Function for Highly Efficient Hydrogen Evolution”, Angew. Chem. Int. Ed., 2014, 53, 13934–13939.

     
     
     

    122. Chen N, Hu Y, Zhao Y, Qu L.T.*, “Progress in Controllable Preparation and Electrochemical Applications of Graphene/Poly (pyrrole) Composites”, Acta Polymerica Sinica, 2014, (6), 752–760.

    121. Yan J, Ding Y, Hu C.G., Cheng H.H., Chen N,* Feng Z.H., Zhang Z.P., and Qu L.T.*, “Preparation of Multifunctional Microchannel-Network Graphene Foams”, J. Mater. Chem. A, 2014, 2 (39), 16786–16792.

    120. Zhao F, Cheng H.H., Hu Y, Song L, Zhang Z.P., Jiang L, and Qu L.T.*, “Functionalized Graphitic Carbon Nitride for Metal-free, Flexible and Rewritable Nonvolatile Memory Device via Direct Laser-Writing”, Sci. Rep. 2014, 4, 5882; DOI:10.1038/srep05882.  

    119. Cheng H.H., Hu C.G., Zhao Y and Qu L.T.*, “Graphene fiber: a new material platform for unique applications”, NPG Asia Materials, 2014, 6(7), e113; DOI: 10.1038/am.2014.48. (Review)

    118. Cheng H.H., Liang Y, Zhao F, Hu Y, Dong Z.L., Jiang L, and Qu L.T.*, “Functional Graphene Springs for Responsive Actuation”, Nanoscale, 2014, 6(19), 11052–11056.

    117. Ye M.H., Dong Z.L., Hu C.G., Cheng H.H., Shao H.B., Chen N, and Qu L.T.*, “Uniquely Arranged Graphene-on-Graphene Structure as a Binder-Free Anode for High-Performance Lithium Ion Batteries”, Small, 2014, 10(24), 5035–5041.

    116. Hu C.G., Zheng G.P., Zhao F, Shao H.B.*, Zhang Z.P., Chen N, Jiang L, and Qu L.T.*, "A powerful approach to functional graphene hybrids for high performance energy-related applications”, Energy Environ. Sci., 2014, 7(11), 3699–3708.

    115. Chen Q, Hu Y, Hu C.G., Cheng H.H., Zhang Z.P.,* Shao H.B., and Qu L.T.*, “Graphene Quantum Dots/Three-Dimensional Graphene Composites for High-Performance Supercapacitors”, Phys. Chem. Chem. Phys., 2014, 16 (36), 19307–19313.

    114. Zhao Y, Hu C.G., Song L, Wang L.X., Shi G.Q. and Dai L.M., and Qu L.T.*, “Functional Graphene Nanomesh Foam”,Energy Environ. Sci., 2014, 7, 1913–1918.

    113. Cheng H.H., Hu Y, Zhao F, Dong Z.L., Wang Y.H., Chen N, Zhang Z.P., and Qu L.T.*, “Moisture-Activated Torsional Motor of Graphene Fiber”, Adv. Mater., 2014, 26, 2909–2913.

    112. Zhang J, Zhang Z.P.*, Chen N, and Qu L.T.*, “Environmentally responsive graphene systems”, Small, 2014, 10(11), 2151–2164. (Review)

    111. Hu C.G., Zhai X.Q., Zhao Y, Bian K, Zhang J, Qu L.T.*, Zhang H.M.*, and Luo H.X.*, “Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation”, Nanoscale, 2014, 6(5), 2768–2775.

    110. Chen Q., Meng Y.N., Hu C.G., Zhao Y., Shao H.B.*, Chen N., Qu L.T.*, “MnO2-Modified Hierarchical Graphene Fiber Electrochemical Supercapacitor”, J. Power Sources, 2014, 247, 32–39.

    109. Hu Y, Cheng H.H., Zhao F, Chen N, Jiang L, Feng Z.H., and Qu L.T.*, “All-in-One Graphene Fiber Supercapacitor”, Nanoscale, 2014, 6, 6448–6451.

    108. Lv L.X., Fan Y.Q., Chen Q, Zhao Y, Hu Y, Zhang Z.P.*, Chen N and Qu L.T.*, “Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors”, Nanotechnology , 2014, 25, 235401 (9pp)

    107. Wang L.X., Hu C.G., Zhao Y., Hu Y., Zhao F., Chen N., and Qu L.T.*, “A dually spontaneous reduction and assembly strategy for hybrid capsules of graphene quantum dots with platinum-copper nanoparticles for enhanced oxygen reduction reaction”,Carbon, 2014, 74, 170–179.

    106. Ding X.T.,‡ ZhaoY,‡ Hu C.G., Hu Y, Dong Z.L., Chen N, Zhang Z.P. and Qu L.T.*, “Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform Supercapacitors”, J. Mater. Chem. A, 2014, 2(31), 12355–12360.

    105. Hu C.G., Wang L.X., Zhao Y, Ye M.H., Chen Q, Feng Z.H., and Qu L.T.*, “Designing Nitrogen-Enriched Echinus-like Carbon Capsules for Highly Efficient Oxygen Reduction Reaction and Lithium Ion Storage”, Nanoscale, 2014, 6(14), 8002–8009.

    104. Gao S.Y.*, Chen Y.L., Fan H, Wei X.J., Hu C.G., Luo H.X., and Qu L.T.*, “Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors”, J. Mater. Chem. A, 2014, 2, 3317–3324. (Cover page)

    103. Gao S.Y.*, Chen Y.L., Fan H, Wei X.J., Hu C.G., Wang L.X., and Qu L.T.*, “A Green One-arrow-two-hawks Strategy for Nitrogen-Doped Carbon Dots as Fluorescent Ink and Oxygen Reduction Electrocatalyst”, J. Mater. Chem. A, 2014, 2, 6320–6325.

    102. Li C.X., Hu C.G., Zhao Y, Song L, Zhang J*, Huang R.D.*, and Qu L.T.*, “Decoration of graphene network with metal–organic frameworks for enhanced electrochemical capacitive behavior”, Carbon, 2014, 78, 231–242.

    2013年:

    101. Zhao Y., Song L., Zhang Z.P.* and Qu L.T.*,Stimulus-responsive Graphene Systemstowards Actuator Applications”, Energy Environ. Sci., 2013, 6(12), 3520–3536. (Review)

    100. Cheng H.H., Liu J., Zhao Y., Hu H.G., Zhang Z.P., Chen N., Jiang L., Qu L.T.*, “Graphene Fibers with Predetermined Deformation as Moisture-Triggered Actuators and Robots”, Angew. Chem. Int. Ed., 2013, 52(40), 10482–10486.

    99. Hu C.G.†, Zhai X.Q.†, Liu L.L., Zhao Y., Jiang L., Qu L.T.*, “Spontaneous Reduction and Assembly of Graphene oxide into Three-Dimensional Graphene Network on Arbitrary Conductive Substrates”, Sci. Rep. 2013, 3, 2065; DOI:10.1038/srep02065.

    98. Meng Y.N., Zhao Y., Hu C.G., Cheng H.H., Hu Y., Zhang Z.P., Shi G.Q., Qu L.T.*, “All-Graphene Core-Sheath Microfibers for All-Solid-State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles”, Adv. Mater., 2013, 25(16) 2326–2331.

    97. Zhao Y., Jiang C.C., Hu C.G., Dong Z.L., Xue J.L., Meng Y.N., Zheng N., Chen P.W., Qu L.T.*, “Large-Scale Spinning Assembly of Neat, Morphology-Defined, Graphene-Based Hollow Fibers”, ACS Nano, 2013, 7(3), 2406–2412.

    96. Zhao Y., Liu J., Hu Y., Cheng H., Hu C., Jiang C., Jiang L., Cao A.Y., Qu L.T.*, “Highly Compression-Tolerant Supercapacitor Based on Polypyrrole-mediated Graphene Foam Electrodes”, Adv. Mater., 2013, 25(4), 591–595.

    95. Hu C.G., Xiao Y., Zhao Y., Chen N., Zhang Z.P., Cao M.H., Qu L.T.*, “Highly Nitrogen-Doped Carbon Capsules: Scalable Preparation and High-Performance Applications in Fuel Cells and Lithium Ion Batteries”, Nanoscale, 2013, 5(7), 2726–2733.

    94. Zhang J., Zhao F., Zhang Z.P.*, Chen N., Qu L.T.*, “Dimension-tailored Functional Graphene Structures for Energy Conversion and Storage”, Nanoscale, 2013, 5(8), 3112–3126. (Review)

    93. Cheng H.H., Dong Z.L., Hu C.G., Zhao Y., Hu Y., Qu L.T.*, Chen N., Dai L.M.*, “Textile Electrodes Woven by Carbon Nanotube/Graphene Hybrid Fibers for Flexible Electrochemical Capacitors”, Nanoscale, 2013, 5(8), 3428–3434.

    92. Xue J.L., Zhao Y, Cheng H.H., Hu C.G., Hu Y, Meng Y.N., Shao H.B., Zhang Z.P. and Qu L.T.*, “An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor”, Phys. Chem. Chem. Phys., 2013, 15(21), 8042–8045.

    91. Hu Y, Zhao Y, Lu G.W., Chen N, Zhang Z.P.*, Li H, Shao H.B. and Qu L.T.*, “Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors”, Nanotechnology, 2013, 24(19), 195401–195407.

    90. Hu C.G., Mou Z.Y., Lu G.W., Chen N.*, Dong Z.L., Hu M.J., Qu L.T.*, “3D Graphene-Fe3O4Nanocomposites with High-Performance Microwave Absorption”, Phys. Chem. Chem. Phys., 2013, 15(31), 13038–13043.
    89. Dong Z.L., Zhou C., Cheng H.H., Zhao Y., Hu C.G., Chen N., Zhang Z.P., Luo H.X., Qu L.T.*, “Carbon nanotube-nanopipe composite vertical arrays for enhanced electrochemical capacitance”, Carbon, 2013, 64, 507–515.
    88. Wang Y.H., Bian K., Hu C.G., Zhang Z.P.*, Chen N., Zhang H.M., Qu L.T.*, “Flexible and Wearable Graphene/Polypyrrole Fibers towards Multifunctional Actuator Applications”, Electrochem. Commun., 2013, 35, 4952.

    2012年:

    87. Hu C.G., Zhao Y., Cheng H.H., Hu Y., Shi G.Q., Dai L.M., Qu L.T.*, “Ternary Pd2/PtFe networks supported by 3D graphene for efficient and durable electrooxidation of formic acid”, Chem. Commun., 2012, 48(97), 11865–11867.

    86.  Hu C.G., Zhao Y., Cheng H.H, Wang Y.H., Dong Z.L., Jiang C.C., Zhai X.Q., Jiang L., Qu L.T.*, “Graphene Microtubings: Controlled Fabrication and Site-specific Functionalization”, Nano Lett., 2012, 12(11), 5879–5884.

     

    85.  Liu J., Wang Z., Zhao Y., Cheng H.H., Hu C.G., Jiang L., Qu L.T.*, “Three-dimensional Graphene/polypyrrole Hybrid Electrochemical Actuator”, Nanoscale, 2012, 4(23), 7563–7568.

     

    84. Zhao Y., Hu C.G., Hu Y., Cheng H.H., Shi G.Q., Qu L.T.*, “A Versatile, Ultralight, Nitrogen-doped Graphene Framework”, Angew. Chem. Int. Ed., 2012, 124(45), 11533–11537.

     

    83. Zhang Z. P.*, Zhang J., Chen N., Qu L.T.*, “Graphene Quantum Dots: An Emerging Material for the Energy-Related Applications and Beyond”, Energy Environ. Sci., 2012, 5(10), 8869–8890. (Review)

     

    82.  Hu C.G., Cheng H.H., Zhao Y., Hu Y., Liu Y., Dai L.M., Qu L.T.*, “Newly-Designed Complex Ternary Pt/PdCu Nanoboxes Anchored on Three-Dimensional Graphene Framework for Highly Efficient Ethanol Oxidation”, Adv. Mater., 2012, 24(40), 5493–5498.

     
    81. Ding Y., Cheng H.H., Zhou C., Fan Y.Q., Zhu J., Shao H.B., Qu L.T.*, “Functional microspheres of graphene quantum dots”, Nanotechnology, 2012, 23(25), 255605 (7pp).
    80.  Dong Z.L., Jiang C.C., Cheng H.H., Zhao Y., Shi G.Q., Jiang L., Qu L.T.*, “Facile fabrication of light, flexible and multifunctional graphene fibers”, Adv. Mater., 2012, 24(14), 1856–1861.
     

    79.  Li Y., Zhao Y., Cheng H., Hu Y., Shi G.Q., Dai L.M., Qu L.T.*, Nitrogen-doped graphene quantum dots with oxygen-rich functional groups, J. Am. Chem. Soc., 2012, 134(1), 15–18.

     

    78.  Cheng H., Zhao Y., Fan Y.Q., Xie X.J., Qu L.T.*, Shi G.Q.*, “Graphene-quantum-dot assembled nanotubes: a new platform for efficient Raman enhancement”, ACS Nano, 2012, 6(3), 2237–2244.

    77.  Zhang L.L., Cheng H., Zhang H.M.*, Qu L.T.*, Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in graphene oxide–Nafion nanocomposite film, Electrochim. Acta, 2012, 65, 122–126.

    76.  Hu Y., Zhao Y., Li Y., Li H., Shao H.B., Qu L.T.*, Defective super-long carbon nanotubes and polypyrrole composite for high-performance supercapacitor electrodes, Electrochim. Acta, 2012, 66, 279–286.

    75.  Liu J., Wang Z.,* Xie X.J., Cheng H., Zhao Y., Qu L.T.*, “A rationally-designed synergetic polypyrrole/graphene bilayer actuator”, J. Mater. Chem., 2012, 22(9), 4015–4020.

    74.  Fan Y.Q., Cheng H., Zhou C., Xie X.J., Liu Y., Dai L.M., Zhang J., Qu L.T.*, “Honeycomb architecture of carbon quantum dots: a new efficient substrate to support gold for stronger SERS”, Nanoscale, 2012, 4 (5), 1776–1781. (Hot article, http://blogs.rsc.org/nr/2012/01/23/stronger-sers-with-honeycomb-quantum-dots/)

    73.  Wang X., Bai H., Jia Y., Zhi L.J., Qu L.T., Xu Y.X., Li C., Shi G.Q., “Synthesis of CaCO3/graphene composite crystals for ultra-strong structural materials”, RSC Adv., 2012, 2(5), 2154–2160.  

    72.   Hu Y., Zhao Y., Li Y., Xie X.J., Li H., Dai L.M., Qu L.T.*, “Electrochemical Introduction of Active Sites into Super-long Carbon Nanotubes for Enhanced Capacitance”, Chem. Res. Chin. Univ., 2012, 28(2), 302–307.   

    2011年:
     
    71. Li Y., Hu Y., Zhao Y., Shi G.Q., Deng L., Hou Y.B., Qu L.T.*, An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics, Adv. Mater., 2011, 23(6), 776780.
     
     
     
    70.Qu L.T.*, Vaia R.A., Dai L.M.*, Multilevel, multicomponent microarchitectures of vertically-aligned carbon nanotubes for diverse applications, ACS Nano, 2011, 5(2), 9941002.
     
     
     
    69. Xie X.J., Bai H., Shi G.Q., Qu L.T.*, Load-tolerant, highly strain-responsive graphene sheets, J. Mater. Chem., 2011, 21(7) 20572059.
    68. Zhao Y., Bai H., Hu Y., Li Y., Qu L.T.*, Zhang S.W., Shi G.Q.,* Electrochemical deposition of polyaniline nanosheets mediated by sulfonated polyaniline functionalized graphenes, J. Mater. Chem., 2011, 21(36), 1397813983.
    67. Ye Y.M., Mao Y., Wang F., Lu H.B., Qu L.T., Dai L.M., Solvent-free functionalization and transfer of aligned carbon nanotubes with vapor-deposited polymer nanocoatings, J. Mater. Chem., 2011, 21(3), 837842.
    66. Du F., Qu L.T., Xia Z.H., Feng L.F., Dai L.M., Membranes of vertically aligned superlong carbon nanotubes, Langmuir, 2011, 27(13), 84378443.
    65. Yang W.Y., Qu L.T., Zheng R.K., Liu Z.W., Ratinac K.R., Shen L., Yu D.S., Yang L., Barrow C.J., Ringer S.P., Dai L.M., Braet F., Self-assembly of gold nanowires along carbon nanotubes for ultrahigh-aspect-ratio hybrids, Chem. Mater., 2011, 23(11), 27602765.
    64. Lu W., Hartman R., Qu L.T., Dai L.M., Nanocomposite electrodes for high-performance supercapacitors, J. Phys. Chem. Lett., 2011, 2(6), 655660.
    63. Welna D.T., Qu L.T., Taylor B.E., Dai L.M., Durstock M.F., Vertically aligned carbon nanotube electrodes for lithium-ion batteries, J. Power Sources, 2011, 196(3), 14551460.
     
    2010年:
     
    62. Xie X.J., Qu L.T.*, Zhou C., Li Y., Zhu J., Bai H., Shi G.Q.*, Dai L.M.*, “An asymmetrically surface-modified graphene film electrochemical actuator”, ACS Nano, 2010, 4(10), 6050–6054.
    61. Qu L.T., Liu Y., Baek J.B., Dai L.M., “Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells”, ACS Nano, 2010, 4 (3), 1321–1326.
    60. Zhao Y., Hu Y., Li Y., Zhang H., Zhang S.W., Qu L.T.*, Shi G.Q., Dai L.M.*, “Super-long aligned TiO2/carbon nanotube arrays”, Nanotechnology, 2010, 21(50), 505702(1–7).
    59. Li Y., Zhou C., Xie X.J., Shi G.Q. Qu L.T.*, “Spontaneous, catalyst-free formation of nitrogen-doped graphitic carbon nanocages”. Carbon, 2010, 48(14), 4190–4196.
    58. Qu L.T.*, Zhang H., Zhu J., Dai L.M.*, “Tunable assembly of carbon nanospheres on single-walled carbon nanotubes”, Nanotechnology, 2010, 21(30), 305602(1–8).
    57. Qu L.T.*, Zhao Y., Hu Y., Zhang H., Li Y., Guo W., Luo H.X. Dai L.M.*, “Controlled removal of individual carbon nanotubes from vertically aligned arrays for advanced nanoelectrodes”, J. Mater. Chem., 2010, 20(18), 3595–3599.
    56. Murphey M.B., Bergeson J.D., Etzkorn S.J., Qu L.T., Li L., Dai L.M., Epstein A.J., “Spin-valve behavior in porous alumina-embedded carbon nanotube array with cobalt nanoparticle spin injectors”, Synth. Met., 2010, 160(3), 235–237.

    2009年及以前
     
    55. Patton S.T., Zhang Q.H., Qu L.T., Dai L.M., Voevodin A.A., Baur J., “Electromechanical characterization of carbon nanotubes grown on carbon fiber”, J. Appl. Phy., 2009, 106(10), 104313(1–9).
    54. Ganguli S., Sihn S., Roy A.K., Dai L.M., Qu L.T., “Metalized nanotube tips improve through thickness thermal conductivity in adhesive joints”, J. Nanosci. Nanotech., 2009, 9(3), 1727–1733.
    53. Lu W., Qu L.T., Henry K., Dai L.M., “High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes”, J. Power Sources, 2009, 189(2), 1270–1277.
    52. El Khoury J.M., Zhou X.L., Qu L.T., Dai L.M., Urbas A., Li Q., “Organo-soluble photoresponsive azo thiol monolayer-protected gold nanorods”, Chem. Commun., 2009, (16), 2109–2111.
    51. Qu L.T., Dai L.M., Stone M., Xia Z.H., Wang Z.L., “Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off”, Science, 2008, 322(5899), 238–242.
    50. Peng Q., Qu L.T., Dai L.M., Park K., Vaia R., “Asymmetrically charged carbon nanotubes by controlled functionalization”, ACS Nano, 2008, 2(9), 1833–1840.
    49. Qu L.T., Du F., Dai L.M., “Preferential syntheses of semiconducting vertically-aligned single-walled carbon nanotubes for direct use in FETs”, Nano Lett., 2008, 8(9), 2682–2687.
    48. Qu L.T., Peng Q., Dai L.M., Spinks G.M., Wallace G.G., Baughman R.H., “Carbon nanotube eaps: opportunities and challenges”, MRS Bulletin, 2008, 33(3), 215–224.
    47. Heltzel A.J., Qu L.T., Dai L.M., “Optoelectronic property modeling of carbon nanotubes grafted with gold nanoparticles”, Nanotechnology, 2008, 19(24), 245702 (1–8).
    46. Bergeson J.D., Etzkorn S.J., Murphey M.B., Qu L.T., Yang J.B., Dai L.M., Epstein A.J. “Iron nanoparticle driven spin-valve behavior in aligned carbon nanotube arrays”, Appl. Phys. Lett., 2008, 93(17), 172505 (1–3).
    45. Sihn S., Ganguli S., Roy A., Qu L.T., Dai L.M., “Enhancement of through-thickness thermal conductivity in adhesively bonded joints using aligned carbon nanotubes”, Composites Science and Technology, 2008, 68(3–4), 658–665.
    44. Bhushan B., Galasso B., Bignardi C., Nguyen C.V., Dai L.M., Qu L.T., “Adhesion, friction and wear on the nanoscale of MWNT tips and SWNT and MWNT arrays”, Nanotechnology, 2008, 19(12), 125702 (1–10).
    43. Wang H.X., Fang J., Cheng T., Ding J., Qu L.T., Dai L.M., Wang X., Lin T., “One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity”, Chem. Commun., 2008, (7), 877–879.
    42. Chen W., Qu L.T., Chang D.W., Dai L.M., Ganguli S., Roy A., “Vertically-aligned carbon nanotubes infiltrated with temperature-responsive polymers: smart nanocomposite films for self-cleaning and controlled release”, Chem. Commun., 2008, (2), 163–165.
    41. Qu L.T., Dai L.M., “Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties”, Adv. Mater., 2007, 19(22), 3844–3849.
    40. Qu L.T., Dai L.M., “Polymer-masking for controlled functionalization of carbon nanotubes”, Chem. Commun., 2007, (37), 3859–3861.
    39. Qu L.T., Dai L.M., “Direct growth of three-dimensional multicomponent micropatterns of vertically aligned single-walled carbon nanotubes interposed with their multi-walled counterparts on Al-activated iron substrates”, J. Mater. Chem., 2007, 17(32), 3401–3405.
    38. Yang Y., Qu L.T., Dai L.M., Kang T.S., Durstock M., “Electrophoresis coating of titanium oxide on aligned carbon nanotubes for controlled syntheses of photoelectronic nanomaterials”, Adv. Mater., 2007, 19(9), 1239–1243.
    37. Yang J., Qu L.T., Zhao Y., Zhang Q., Dai, L.M., Baur J.W., Maruyama B., Vaia R.A., Shin E., Murray P.T., Luo H.X., Guo Z.X., “Multicomponent and multidimensional carbon nanotube micropatterns by dry contact transfer”, J. Nanosci. Nanotech., 2007, 7(4–5), 1573–1580.
    36. Qu L.T., Chen W., Dai L.M., Roy A., Tolle T.B., “Polymer and aligned carbon nanotube nanocomposites and nanodeives”, SAMPE Journal, 2007, 43(6), 38–46.
    35. Zhou X.L., El Khoury J.M., Qu L.T., Dai L.M., Li Q., “A facile synthesis of aliphatic thiol surfactant with tunable length as a stabilizer of gold nanoparticles in organic solvents”, J. Colloid & Interface Sci., 2007, 308(2), 381–384.
    34. Qu L.T., Dai L.M., Osawa E., “Shape/size-controlled syntheses of metal nanoparticles for site-selective modification of carbon nanotubes”, J. Am. Chem. Soc., 2006, 128(16), 5523–5532.
    33. Qu L.T., Zhao Y., Dai L.M., “Carbon microfibers sheathed with aligned carbon nanotubes: Towards multidimensional, multicomponent, and multifunctional nanomaterials”, Small, 2006, 2(8–9), 1052–1059.
    32. Hong Z.M., Shi G.Q., Wu X.F., Qu L.T., “Fabrication of highly hydrophobic films of poly(3-hexadecyl pyrrole) nanoparticles by Langmuir-Blodgett technique”, Chin. J. Polymer Sci., 2006, 24 (5), 457–462.
    31. Singh U., Prakash V., Abramson A.R., Chen W., Qu L.T., Dai L.M., “Mechanical characterization device for in situ measurement of nanomechanical properties of micro/nanostructures”, Appl. Phys. Lett., 2006, 89 (7), 073103 (1–3).
    30. Qu L.T., Dai L.M., “Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes”, J. Am. Chem. Soc., 2005, 127(31), 10806–10807.
    29. Qu L.T., Dai L.M., “Novel silver nanostructures from silver mirror reaction on reactive substrates”, J. Phys. Chem. B, 2005, 109(29), 13985–13990.
    28. Ma M.M., Qu L.T., Shi G.Q., “Glucose oxidase electrodes based on microstructured polypyrrole films”, J. Appl. Polym. Sci., 2005, 98(6), 2550–2554.
    27. Lu G.W., Qu L.T., Shi G.Q., “Electrochemical fabrication of neuron-type networks based on crystalline oligopyrene nanosheets”, Electrochim. Acta, 2005, 51(2), 340–346.
    26. Fan B., Qu L.T., Shi G.Q., “Electrochemical polymerization of anthracene in boron trifluoride diethyl etherate”, J. Electroanalyt. Chem., 2005, 575(2), 287–292.
    25. Lu G.W., Chen F., Wu W.F., Qu L.T., Zhang J.X., Shi G.Q., “Micro- and nano-structured conducting polymeric materials”, Chin. Sci. Bull., 2005, 50(16), 1673–1682.
    24. Qu L.T., Shi G.Q., Liu C., Yuan J.Y., Qian W.B., “Preparation, characterization and electrochemical properties of polypyrrole-polystyrene sulfonic acid composite film”, Chin. J. Polym. Sci., 2005, 23(1), 37–46.
    23. Qu L.T., Shi G.Q., Wu X.F., Fan B., “Facile route to silver nanotubes”, Adv. Mater., 2004, 16(14), 1200–1203.
    22. Qu L.T., Shi G.Q., “Crystalline oligopyrene nanowires with multicolored emission”, Chem. Commun., 2004, (24), 2800–2801.
    21. Qu L.T., Shi G.Q., “Hollow microstructures of polypyrrole doped by poly(styrene sulfonic acid)”, J. Polym. Sci. A Polym Chem., 2004, 42(13), 3170–3177.
    20. Qu L.T., Shi G.Q., Yuan J.Y., Han G.Y., Chen F., “Preparation of polypyrrole microstructures by direct electrochemical oxidation of pyrrole in an aqueous solution of camphorsulfonic acid”, J. Electroanalyt. Chem., 2004, 561(1–2), 149–156.
    19. Yuan J.Y., Zhang D.Q., Qu L.T., Shi G.Q., Hong X.Y., “Direct electrochemical generation of conducting polymer microcontainers on silicon substrate”, Polym. Int., 2004, 53(12), 2125–2129.
    18. Han G.Y., Shi G.Q., Qu L.T., Yuan J.Y., Chen F.E., Wu P.Y., “Electrochemical polymerization of chiral pyrrole derivatives in electrolytes containing chiral camphor sulfonic acid”, Polym. Int., 2004, 53(10), 1554–1560.
    17. Li E.H., Huang Z.M., Shi G.Q., Qu L.T., Zhang J.X., “Electrochemical polymerization of beta-naphthalene sulfonic acid”, J. Appl. Polym. Sci., 2004, 92(3), 1939–1944.
    16. Zhang Z.P., Shi G.Q., Wu X.F., Qu L.T., “Electropolymerization of 2-phenylthiophene”, Acta. Polym. Sin., 2004, (1), 140–144.
    15. Yuan J.Y., Qu L.T., Zhang D.Q., Shi G.Q., “Linear arrangements of polypyrrole microcontainers”, Chem. Commun., 2004, (8), 994–995.
    14. Qu L.T., Shi G.Q., “Electrochemical synthesis of novel polypyrrole microstructures”, Chem. Commun., 2003, (2), 206–207.
    13. Qu L.T., Shi G.Q., Chen F., Zhang J.X., “Electrochemical growth of polypyrrole microcontainers”, Macromolecules, 2003, 36(4), 1063–1067.
    12. Zhang Z.P., Qu L.T., Shi G.Q., “Fabrication of highly hydrophobic surfaces of conductive polythiophene”, J. Mater. Chem., 2003, 13(12), 2858–2860.
    11. Huang Z.M., Qu L.T., Shi G.Q., Chen F., Hong X.Y., “Electrochemical polymerization of naphthalene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer”, J. Electroanalyt. Chem., 2003, 556, 159–165.
    10. Qu L.T., Shi G.Q., Chen F.E., Zhang J.X., Fu M.X., Sun S.Q., “High-quality polyene prepared by liquid/solid two-phase dehydrochlorination of poly(vinyl chloride)”, Synth. Met., 2003, 135(1–3), 219–220.
    9. Qu L.T., Sun S.Q., Liu C., Chen F.E., Hong X.Y., Shi G.Q., “Environmental stability of the polyene prepared by dehydrochlorination of poly(vinyl chloride)”, Chin. J. Polym. Sci., 2003, 21(1), 71–75.
    8. Yuan J.Y., Qu L.T., Shi G.Q., Hong X.Y., “Novel polypyrrole microstructures generated by direct electrochemical oxidation of pyrrole on p-type silicon substrate”, Chin. J. Polym. Sci., 2003, 21(4), 399–403.
    7. Liu C., Zhang J.X., Shi G.Q., Qu L.T., Chen F.E., “Proton-conducting gel polyelectrolytes based on Lewis acid”, J. Appl. Polym. Sci., 2003, 90(5), 1267–1272.
    6. Zhang J.X., Shi G.Q., Liu C., Qu L.T., Fu M.X., Chen F.E., “Electrochemical fabrication of polythiophene film coated metallic nanowire arrays”, J. Mater. Sci., 2003, 38(11), 2423-2427.
    5. Xu J.K., Shi G.Q., Qu L.T., Zhang J.X., “Electrosyntheses of high quality polypyrrole films in isopropyl alcohol solution of boron trifluoride diethyl etherate”, Synth. Met., 2003, 135(1-3), 221–222.
    4. Huang Z.M., Shi G.Q., Qu L.T., Hong X.Y., “Electrochemical polymerization of beta-naphthalene sulfonic acid in the mixed electrolyte of boron trifluoride diethyl etherate and trifluoroacetic acid”, J. Electroanalyt. Chem., 2003, 544, 41–46.
    3. Chen F., Shi G.Q., Fu M.X., Qu L.T., Hong X.Y., “Raman spectroscopic evidence of thickness dependence of the doping level of electrochemically deposited polypyrrole film”, Synth. Met., 2003, 132(2), 125–132.
    2. Wu X.F., Shi G.Q., Qu L.T., Zhang J.X., Chen F.E., “Novel route to poly (p-phenylene vinylene) polymers”, J. Polym. Sci. A Polym. Chem., 2003, 41(3), 449–455.
    1. Wu X.F., Shi G.Q., Qu L.T., Chen F.E., Hong X.Y., “A novel route to poly(2-methoxy-5-(2 ‘-ethyl-hexyloxy)-p-phenylene)”, Acta Polym. Sin., 2003, (1), 147–149.

    2011年

    2010年

    2009年及以前

    查看更多...